APPENDIX I

DETERMINATION PROCESS FOR CALIFORNIA OFFSHORE DISPERSANT ZONES

The use of dispersants in marine waters off California requires detailed foresight and planning. In an effort to expedite a decision to use dispersants and reduce first strike response time, the Regional Response Team Region IX in August of 2000 adopted formal changes to the planning and operations sections of the Regional Contingency Plan (RCP). These sections detail a dispersant use planning process to be undertaken by each of the six California marine Area Committees (AC). Specifically, each AC was tasked with designation of approval zones for dispersant use within its area of operation and the development of a dispersant use plan to include at least the following: 1) Incident Command System (ICS) protocols and forms, 2) Federal On-Scene Coordinator Checklist, 3) dispersant monitoring plan, and 4) wildlife spotting protocols. Finally, each committee was asked to review training and drill requirements for plan implementation as well as dispersant response equipment assuming a 4-hour response time.

Beginning in February 2001, each Area Committee (North Coast, San Francisco-Bay Delta, Central Coast, Los Angeles-North, Los Angeles-South, San Diego) designated a dispersant subcommittee to develop their regional dispersant use zone recommendations. Los Angeles subsequently combined LA-north and LA-south efforts under one subcommittee. San Diego developed an additional Sea Bird Task Force that compiled sea bird information primarily for the Southern California Bight area, and reported their results to the San Diego dispersant subcommittee for their particular consideration in developing recommended zones. All subcommittees initiated the planning process by gathering the pertinent resource data for the region and becoming familiar with the effects of dispersants and dispersed oil in the marine environment. Based on the information reviewed, each subcommittee developed a Net Environmental Benefit Analysis (NEBA) to aid them in constructing the area's dispersant use zone recommendations. Based on the results of the NEBA, each subcommittee ultimately concluded that in the case of dispersible crude and fuel oils, dispersing the spilled oil into the water column may, on balance, be less harmful to the environment than letting the oil remain on the ocean's surface for extended periods of time.

Each subcommittee and Area Committee drafted their dispersant zone recommendations, along with some general dispersant application guidelines, and forwarded those through the U.S. Coast Guard to the RRT. All zone recommendations were approved by the RRT between February 2002 and July 2003. Parallel to the RRT dispersant zone review and approval process, the Los Angeles subcommittee was continuing to meet in workgroups to develop drafts of the other elements (updated FOSC checklist, Wildlife Observation Protocols, Public Outreach Plan, dispersant shortfall analysis, and incorporation of dispersant effectiveness monitoring) necessary to make a complete Area Dispersant Plan (ADP). In doing so, there was a recognition that much of the Los Angeles effort would not only be useful as a starting point for similar efforts by other Area Committees in developing their individual ADPs, but would in fact mature into an overarching California Dispersant Plan that would serve all six marine Area Committee regions in the state and save them the need to develop five other, largely redundant, dispersant plans. This California Dispersant Plan (CDP) includes the zones for each area, as well as an updated Federal On-Scene Coordinator (FOSC) checklist and all appendices needed to implement the CDP.

The Net Environmental Benefit Analysis (NEBA) Process

Once oil is spilled to the ocean there will be inevitable impacts to the environment within the geographical area of the spill no matter how much effort is put into spill response. The primary goal of any oil spill

response is to minimize the area of impact and remove the spilled oil from the water's surface as fast as possible, thus minimizing the impact to the organisms inhabiting the terrestrial, estuarine, intertidal, shallow subtidal and ocean surface environments. This response goal is not meant to overlook the potential for impacts to the organisms found immediately below the ocean surface, but instead provides a mechanism for discussion of the environmental trade-offs associated with any response option.

Each regional dispersant subcommittee assessed and compared the impacts of an oil spill and associated cleanup activities on the biological resources of their area. This examination was conducted using a Net Environmental Benefit Analysis (NEBA), modeled on an Ecological Risk Assessment previously conducted for the San Francisco Bay. In each case, the NEBA examined and compared the risk to the environment associated with available oil spill response options. Spill response options evaluated were 1) no on-water response, 2) mechanical cleanup, 3) *in situ* burning, and 4) dispersant use. The risks of these cleanup options were examined using a NEBA risk matrix, which qualitatively combined the risk to the biological resource resulting from both the magnitude (percentage) of the population impacted with the expected time for the population to recover from the impact.

The NEBA in each area was conducted using an assumed spill of Alaska North Slope crude oil, a dispersible crude oil commonly transported along the coast of California. The approach was a "what-if" analysis in that all sensitive species that could be found in a region, regardless of time of year, were incorporated. This approach was undertaken to eliminate the need to conduct the multiple NEBAs necessary to address spatial and temporal differences found each region. By using this approach, each dispersant subcommittee had all the pertinent resource information at their disposal at one time and could examine and incorporate temporal and spatial differences in their single analysis.

Each regional NEBA had the same general findings:

- 1) In average or worse-than-average offshore response settings, and/or where spill distance from shore significantly increases the response time, mechanical cleanup techniques and *in situ* burning may, by themselves, provide very little improvement over the no response option. When this is the case, these response techniques will not significantly reduce the risk of spilled oil contacting biological resources at the sea surface or in more inshore (*e.g.*, intertidal) regions.
- 2) When used in an appropriate and timely manner, dispersants can remove a significant amount of oil from the surface water. Appropriate and timely application includes a number of decision factors, included in this CDP.
- 3) While dispersants may measurably reduce the risk of oil to surface and coastal biological resources, there may be a temporally limited increase in risk to the plankton community in the upper several meters of the water column.
- 4) Shoreline cleanup methods may not be available or appropriate for use in some sensitive coastal habitats (*e.g.*, rocky intertidal, marshes, wetlands); their inappropriate use may pose a greater risk to these sensitive habitats and dependent species than the oil itself. The goal in this case shifts to keeping the oil from ever reaching sensitive coastal and inland areas.

In the NEBA process, the benefits and risks of each cleanup option were evaluated separately. However, an effective spill response may use a combination of several available response options. Oceanographic conditions permitting, it is expected that dispersants would be used in combination with mechanical cleanup equipment and response strategies.

NEBA results suggested that the appropriate and timely use of dispersants (on oil spills characterized as "dispersible") could greatly enhance the ability to remove significant quantities of oil from the offshore water surface. This may greatly reduce the risk of spilled oil reaching the more abundant and sensitive habitats and species found in the more inshore, coastal areas. While dispersing oil into the water column can pose a short-term risk to the plankton community inhabiting the upper few meters of the water column, the impacts will be to a much more geographically limited area, and the temporal duration will be relatively very short. The environmental "trade-off" decision-making at the time of a response – weighing the impacts associated with oil on the surface for weeks to months versus the short term toxicity (minutes to hours) resulting from dispersed oil in the water column – can and will be made by the response agencies on a case-by-case spill response basis.

The detailed NEBA matrices developed by each regional dispersant subcommittee are not part of this report, although information about particular resources of concern is summarized in Appendix B.

Environmental "Trade-off" Decisions

The proposed area dispersant zone recommendations acknowledge that weighing of environmental "trade-offs" is not as easy as it may seem, even when information on sensitive resources has been gathered ahead of time. Information on species occurrences and distributions is still very incomplete, as is our knowledge of how they may be affected by prevailing oceanographic conditions.

No resource can be categorized as always being of greater or lesser value than another. For instance, while spill impacts on seabirds, mammals and sensitive communities are more "apparent" to scientists, responders and the general public, other more "hidden" resources (such as the seasonal plankton community in the upper water column) are at potentially greater risk from oil dispersed into the water. This community may contain the larvae of important sport, commercial, and/or ecologically significant (*i.e.*, primary or important animal prey) species.

The following were understandings regarding the plankton communities at risk from a dispersed oil plume:

- In most imaginable response settings, it may be better to disperse the oil into the water column (where there may be short-term toxicity to larvae in the upper few meters of the water column) than to leave the undispersed and unrecoverable oil on the water surface (where it could reside long-term, spread, and potentially impact a wider range of sensitive coastal species and habitats).
- Due to the spatial and temporal distribution of larval species, the dispersed oil from any one oil spill
 response was expected to impact a very limited portion of the overall community. Many constituent
 plankton species would quickly replenish their numbers through reproduction or immigration from
 surrounding waters. It was therefore considered unlikely that there would be population-level
 affects to the plankton community.
- The concentration of dispersed oil in the open ocean can decrease rapidly through natural dispersion and biodegradation processes. The dispersed oil plume can spread and thin quickly in the three-dimensional space of the water column, and natural biodegradation processes work quickly to break the small droplets of oil in the plume into carbon dioxide and water. In areas where the dilution potential is the greatest (*i.e.*, open ocean), concentrations of dispersed oil high enough to cause adverse effects are unlikely to persist for more than several hours. Oil concentrations are typically less than 50 part per million (ppm) below dispersed slicks, although different authors report slightly

different upper levels. Field data indicate that concentrations of dispersed oil are usually less than 1 ppm at depths below 10 meters. Within a matter of weeks to months, dispersion and biodegradation processes can remove much of the plume of oil droplets from the upper water column, and/or reduce concentrations of oil in the water column and at depth to scientifically non-detectable levels.

- In contrast, undispersed and unrecovered oil left on the water's surface in the open ocean can drift for weeks to months, where it can continue to impact pelagic birds, mammals and perhaps sea turtles. If the oil moves toward shore, it can strand in sensitive coastal habitats (especially intertidal areas) and pose a persistent threat, on a time scale of months to years, to those sensitive coastal habitats and their dependent species and communities.
- Emulsification of the oil remaining at the water surface increases the oil-in-water volume, and hence the contamination risk to marine and coastal plant and animal communities.

Oil spill impacts to marine birds and mammals can threaten the existence and persistence of whole colonies and perhaps the entire population of some species. This is especially true for colonies and populations of common murres, the endangered marbled murrelet, shorebirds (including the endangered western snowy plover) and the southern sea otter.

Stakeholder involvement and outreach efforts

The regional Area Committees, which developed the pre-approval dispersant zone recommendations, and from those this document, are mandated by the Oil Pollution Act of 1990 to include any interested member of the public. Given the sensitivity that dispersant use issues can raise, each regional Area Committee made special and repeated efforts to bring interested stakeholders onto the dispersant subcommittees even if they had not shown previous or consistent interest in other Area Committee response planning work. Generally, in spite of these efforts, most dispersant subcommittees came to include those who were already the most active in their respective Area Committees. Statewide information-sharing and continuity was provided by the Office of Spill Prevention and Response (OSPR), California Coastal Commission (CCC) and the National Oceanic and Atmospheric Administration (NOAA).

In early 2001, a team of RRT representatives made a presentation at a public meeting of the California Coastal Commission; another presentation of the same material was later made at the Gulf of the Farallons Research Symposium. Throughout 2001 and 2002, there were several "Stakeholder Meetings" to distribute the dispersant response planning information to other agencies and interested members of the public. The OSPR and NOAA staff also provided the materials for the U.S. Fish and Wildlife Service and National Marine Fisheries Service reviews, and regularly briefed the RRT on progress of each dispersant subcommittee. OSPR and CCC staff regularly briefed the state Oil Spill Technical Advisory Committee.

Further public outreach was offered in public information sessions at several coastal locations in California and at a public meeting of the California Coastal Commission. The U.S. Coast Guard will also publish a Federal Register Notice of this plan once it is finalized, on which the public may comment.